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The purpose of this paper is twofold. First, we prove the uniqueness of
a polynomial of best uniform approximation, in a certain class fJJ of
"monotone" polynomials, to a given continuous function. This is the content
of Theorem 3.1 which complements the results of Lorentz and Zeller [1].
Secondly, we prove (Theorem 6.1) that a polynomial of best L 1 approximation
in the class fJJ, to a given continuous function is also unique. This is the
analog of Jackson's theorem for general polynomials. As a preliminary to
Theorem 6.1, we give a necessary condition for a polynomial in fJJ to be a
polynomial of best L 1 approximation to an integrable function.

1. PRELIMINARIES

Let 1 <; k1 < ... < k p be positive integers and let €i = ±1, i = 1,... , p.
For a positive integer n (which will remain fixed throughout the paper), we
denote by fJJ = fJJ(k1 , ... , k p ; €l , ... , €p) the set of all polynomials P, of
degree not exceeding n, satisfying

€ .p(ki)(X) >-: 0, Y' , a :s::; x :s::; b, i = 1,... , p. (1.1)

Since (1.1) holds automatically for k i > n, we may as well assume in the
following that k p :s::; n, which we do.

Compactness and convexity arguments show that for each J in C[a, b]
there exists at least one polynomial in fJJ of best uniform approximation.
IfJ is merely known to be integrable, then there is at least one polynomial
in f!JJ of best L 1 approximation. Our problem is to prove that ifJis continuous,
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then there exists in f!l' only one polynomial of best uniform approximation,
and only one polynomial of best L 1 approximation. Simple examples show
that iff is discontinuous, there may be in f!l' more than one polynomial of
best L 1 approximation.

In [1], Lorentz and Zeller developed to a considerable extent the theory
of the class f!l'. However, they proved their main result, the uniqueness
theorem for best uniform approximation, only for the case p = 1. We treat
here the more intricate general case.

For any pair P E f!l',fE qa, b], we define the sets

A(P,j) = {x I x E [a, b], If(x) - P(x) I = Ilf - P II}, (1.2)

BlP) = {x I x E [a, b], p(kj)(X) = O}, j = 1,... , p. (1.3)

Here II '11 is the uniform norm on [a, b].
We shall use the following results from [1]:

LEMMA 1.1. A polynomial P E f!l' is a polynomial of best uniform approxi
mation to f E qa, b] if and only if there is no polynomial Q of degree not
exceeding n, for which

Q(x) u[f(x) - P(x)] < 0,

EiQ(ki)(X) < 0,

where u(u) is the sign of u.

X E A(P,j),

X E Bi(P), i = l, ... ,p,

(1.4)

(1.5)

LEMMA 1.2. For a given fE qa, b], there exists among all polynomials
in f!l' of best uniform approximation to f, a "minimal polynomial" Po, which
satisfies

A(Po,j) C A(P,j),

Bi(PO) C Bi(P), i = l, ... ,p,

Po(x) = P(x), X E A(Po ,j)

(1.6)

(1.7)

(1.8)

for any other polynomial P E f!l' of best uniform approximation to f Moreover,
deg(Po) ~ deg(P)for any such P.

Remark. The last claim is not proved in [1] but is immediate.
An essential tool in the following is the concept of "free" or "poised"

matrices and the associated Birkhoff interpolation problem. Let E = (eij)

be an m X (n + 1) matrix. E is called an "incidence" matrix if E has only
zeros or ones as entries. That is, for each 1 ~ i ~ m, °~ j ~ n, eij is 0 or 1.
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We set e = Hi, j) I eij = I}. It is generally assumed that an incidence matrix
has exactly n + 1 nonzero entries. However, for the sake of convenience,
we do not make this assumption.

If the number of nonzero entries of some incidence matrix E is n + 1,
then for any choice of points Xl < X2 ... < X m and of real numbers bij,
(i, j) E e, we can associate with E the following Birkhoff interpolation
problem (R.I.P.) for a polynomial Q of degree not exceeding n: Determine Q
so that

(i,j) E e.

Conversely, consider the problem of determining a polynomial Q of
degree ~n, satisfying the n + I conditions:

(1.9)

where the integers <Xij, the reals fJij and the (distinct) reals Yj are given.
Let '\ < ... < Am be the points Yi arranged in increasing order. Then to
this problem there corresponds an m X (n + 1) incidence matrix E = (eij)

for which eij = I if Q(j)(Ai ) appears in one of the conditions (1.9) and
eij = 0 otherwise.

If E = (eij) is an m X (n + 1) incidence matrix and if the corresponding
interpolation problem has a unique solution, regardless of the values of
the Xi and bij , then E is said to be "free". (or "poised").

Let

m

mj = L eij,
i~l

j = 0, I, ... , n.

Schoenberg [2] proved that each free incidence matrix E satisfies the P61ya
conditions

k

I mj;;" k + I,
j~O

k = 0, 1,... ,n.

Also useful for us will be the "strong" P61ya conditions for an m X (n + 1)
incidence matrix:

k

I mj;;" k + 2,
j=O

k = 0, 1, ... , n - 1. (1.10)

It is to be noted that we formulate the P61ya and strong P61ya conditions
for m X (n + 1) incidence matrices without requiring the number of nonzero
entries to be n + 1, although this is not customary.
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Atkinson and Sharma [3] gave a sufficient condition for an incidence
matrix to be free. To state this condition, we introduce the notions of
"maximal" and "supported" sequences.

A "maximal" sequence of the incidence matrix E is a sequence of 1's:

eij , ei.Hl , ... , ei.j+r

which cannot be extended to a longer sequence of 1's of this form.
A maximal sequence of E is said to be "supported" if, when written in the
above form, there exist integers io , i1 ,jo , jl, with 0 ~ jo < j, 0 ~ jI < j,
and 1 ~ io < i < il ~ m, for which ei i = ei i = 1.o 0 1 1

If every supported sequence of E has an even number of elements, then E
is said to satisfy the Atkinson-Sharma condition. These authors proved
that if the m X (n + 1) incidence matrix E (with exactly n + 1 nonzero
entries) satisfies the Atkinson-Sharma condition and the P6lya conditions,
then E is free.

2. INTERMEDIATE LEMMAS

In this section, we establish some lemmas needed for the proof of the
uniqueness theorem for the uniform norm. For IE C[a, b], we define the
sets A(P,f), HlP) by (1.2) and (1.3) and denote by m, Ij , j = 1, ...,p, the
number of elements of these sets, respectively (m = co and Ij = co not being
excluded).

Clearly, if HlP) is infinite, then HlP) = [a, b]. However, A(P,f) can be
infinite without being trivial.

By ej we denote the number of elements of HlP) n {a, b}. Then ej is
either zero, one or two.

lt would be interesting to characterize completely the cardinality of
sets A, Hj that can serve as sets A(P,f), BlP) for some pair P, f In this
direction, we have the inequalities (see [1]):

2Ij - ej ~ kH1 - k j ,

211' - el' ~ n - kl' .

j = 1,... ,p - 1,

We omit the proof (which is not difficult), since these inequalities will not be
needed in the sequel.

The following restrictions on the sets B j are useful.

LEMMA 2.1. For each P E &,

Y E Bj(P) n (a, b), j = 1,... , p. (2.1)
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If kjH = k j + 1 for some j = 1,... , p - 1, and if P is of degree at least k j ,
then

Bj(P) C {a, b}. (2.2)

Proof Let Y E B;(P) n (a, b). Then EjP<k;)(y) = O. If plk;+l)(y) oF 0, then
EjP<k;) would change sign at y. Since EjPlk;) ~ 0 on [a, b], this is impossible.

If kjH = k j + 1 for some j = 1,... , p - 1 and the degree of P is at least
k j , then Plk;) must be either monotone increasing or monotone decreasing
(and not identically zero), since Ej+lPlk;+l) ~ O. Since Plk;) does not change
sign on [a, b], it can have a zero only at one of the end-points a or b. This
proves (2.2).

It will be convenient to associate with each polynomial P E f?JJ and each
function fE qa, b], a certain incidence matrix E(P, f). We assume that
A(P, f) is finite and we denote by v the degree of P. Moreover, we denote
by Xi, i = 1,... , m, Yji, k j :(; v; i = 1,... , Ij the elements of A(P,f) and
B;(P), k j :(; v, respectively. Note that m and Ij are finite for k j :(; v. Let
E(P, f) be the incidence matrix corresponding to the following conditions
(for some Oii , f3ji , 'Yji):

Q(Xi) = Oii,

Q(k;l(YJi) = f3ji,

Q(k;+l)(Yji) = 'YJi ,

Moreover, let

i = 1,... , m, (2.3)

kj :(; v, i = 1,... , Ij , (2.4)

a < Yji < b, k j + 1 :(; v, i = 1,... , Ij . (2.5)

N = m - 1 + L Ij + L (lj - ej).
kj~J) k;+l~v

(2.6)

LEMMA 2.2. Let P E f?JJ be a polynomial of best uniform approximation
to f E qa, b]. Let A(P, f) be finite and let v be the degree of P. Then the
above-defined incidence matrix E(P, f) satisfies the Atkinson-Sharma condition
and the strong P61ya conditions. Also, if N is given by (2.6), then

N = m - 1 + L (21j - ej),
k;<,v

N ~ v + 1,

(2.7)

(2.8)

and (2.3-5) consist of exactly N + 1 distinct nonover/apping conditions.

Proof We first prove the last claim of the lemma. There will be exactly
N + 1 distinct conditions (2.3)-(2.5) if we can show that none of the condi
tions overlap. The only possibility for overlap is if there exists a jo with
k jo < v and k jo + 1 = kjo+l together with points Yjoio= Yjo+1.i; E (a, b).
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But according to Lemma 2.1, if k jo + 1 = k jo+1' then Bjo(P) C {a, b} and
so Yjoiort (a, b).

Next we prove (2.7). It is necessary only to prove that Ij - ej = 0 if
k j + 1 = v + 1 since, then, (2.6) and (2.7) coincide. If k j = v, then P(kj) is
a nonzero constant since P is of degree v. Thus Ij - ej = 0, since Ij = ej = O.

The last two paragraphs show that the conditions (2.4) and (2.5) come in
nonovedapping pairs, whenever Yji E (a, b). Thus, any maximal sequence
of E(P,j) not lying in the first or last row, either begins in the first column
or is of even length. This means that every supported sequence is of even
length and, so, E(P, f) satisfies the Atkinson-Sharma condition.

We now show that E(P,f) satisfies the strong P6lya conditions. Since
each polynomial P of best approximation deviates from fby II f - P II in
at least two points, m ~ 2; hence (1.10) is satisfied for k = O. Assume that
(1.10) is not satisfied for some k, 0 < k < v. We shall reach a contradiction.
Let k be the smallest k for which (1.10) is violated. Consider the incidence
matrix E consisting of the columns of E(P, f) numbered 0 to k. By assump
tion,

k

I mj :( k + 1,
j~O

and (1.10) is satisfied for 0 :( k :( k - 1. This implies that m/i = 0 and that

k

L mj = k + 1.
j~O

Since the k-th column of E(P,f) has only zeros as entries, no maximal
sequence of E(P, f) can cross this column. Consequently, E must satisfy
the Atkinson-Sharma condition.

We consider the B.I.P. for a polynomial Q of degree not exceeding k,
corresponding to the matrix E, and with data:

Q(Xi) = (Xi = -a[f(xi) - P(Xi)], i = 1,00.,m,

Q(/Cj)(y;;) = 0,

Q(k j +1)(Yji) = 0,

k j :( K, i = 1'00" Ij , (2.9)

k j + 1 :( k, a < Yji < b, i = 1'00" Ij •

Since E satisfies the Atkinson-Sharma condition and the strong P6lya
conditions, it is free. Hence a Q of degree not exceeding k satisfying the
Eqs. (2.9) exists. Since Q also satisfies

Q(kl(X) = 0, k > k,

we obtain a contradiction to Lemma 1.1. (We note that (1.4) is satisfied,
since m is finite and, hence, Ilf - P II =1= 0.)
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Finally, we show that (2.8) is satisfied. The proof proceeds similarly. We
assume that N ~ v and reach a contradiction. Since we have proved that
E(P,f) satisfies the strong P61ya conditions, we must have N = v. We
consider the B.I.P. (2.9), with k replaced by v. There are exactly v + 1
conditions. Since E(P,f) satisfies the Atkinson-Sharma condition and the
strong P61ya conditions, a solution Q of degree not exceeding v exists. Since
also

Q(k)(X) = 0,

Lemma 1.1 is violated. Thus N ?o v + 1.

k > v,

Remark. By means of the inequality (2.8) and the fact that E(P,f)
satisfies the strong P61ya conditions, we can obtain the following inequalities
which help to characterize the sets A(P,f) and Bi(P):

q

m + L (2/; - e;) ?o k q +1 + I,
;~1

m + L (2/; - e;) ?o v + 2.
kj~p

q ~ n - 1, k q+1 - 1 ~ v,

The proof is not difficult if one keeps in mind the structure of E(P,f). We
omit the proof, however, since we do not use these inequalities.

3. THE UNIQUENESS THEOREM FOR THE UNIFORM NORM

By means of Lemmas 2.1 and 2.2, the uniqueness theorem for the uniform
norm can now be proved.

THEOREM 3.1. Let f E C[a, b] be given. Then among all polynomials of f!lJ
there is exactly one which approximates f best in the uniform norm.

Proof Let Po be a minimal polynomial as described in Lemma 1.2.
We suppose that there is more than one polynomial of best approximation
and reach a contradiction. Let P be any other polynomial of best approxima
tion. If deg(po) = v, then deg(P) ~ v. We shall show that D = Po - P is
identically zero.

Let A = A(Po ,f), B; = B;(Po) and let Xi' Y;i' m, I;, e; be the points
and numbers associated with A and B;. Since deg(Po) = v, I; is finite for
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k j ~ v. We may also assume that m is finite since, otherwise, D _ 0
obviously. By Lemmas 1.2 and 2.1, D satisfies the conditions

D(Xi) = 0,

D(kj)(YJi) = 0,

D(k j +1)(YJi) = 0,

i = 1,... , m,

k j ~ v, i = 1, ... , lj , (3.1)

a < Yji < b, k j + 1 ~ v, i = 1,... , Ij .

(4.1)

The incidence matrix corresponding to these conditions, E(Po ,1), is
exactly the E(P,j) of Lemma 2.2. The total number of l's in this matrix
is N + 1 ~ v + 2, where N is given by (2.6). If we add to E(Po,j) zero
columns, numbered v + 1 through N, in order to have a total of N + 1
columns, then the new matrix is free, by Lemma 2.2 and the Atkinson
Sharma theorem. Since D is a polynomial of degree not exceeding v and,
hence, not exceeding N, satisfying (3.1), D must be identically zero. This is
the desired contradiction.

4. PRELIMINARIES ON THE L1 NORM

Let f E C[a, b]. By compactness and convexity arguments, it follows that
there exist polynomials in [7} = [7}(k1 , ... , k p ; E1 , ... , Ep ) which among all
polynomials in [7}, approximate f best in the L 1 norm. Our problem is to
show that there is no more than one such polynomial.

Since the theory of approximation in the L 1 norm has not yet been
developed for the class [7}, we shall develop the necessary parts here. In
particular, Lemmas 1.1 and 2.1 must be suitably replaced.

THEOREM 4.1. If P E [7} is a polynomial of best ~ approximation to
fE C[a, b] and iff - P =1= 0 a.e. in [a, b], then

rQ(x) a[f(x) - P(x)] dx ~ 0
a

for every polynomial Q E [7} of degree not exceeding n. Moreover,

rP(x) a[f(x) - P(x)] dx = O.
a

Proof Suppose, to the contrary, that there is a Q E [7} of degree not
exceeding n for which

rQ(x) a[f(x) - P(x)] dx = 0 > 0.
a

(4.2)
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Since a(f - P) =I=- 0 a.e., a[! - (P + AQ)] converges to a(f - P) a.e.
Hence,

" f"f Qa[! - (P + AQ)] dx ---+ Qa(f - P) dx
a a

as A---+ O. We may thus choose a A > 0 sufficiently small so that

ArQa[! - (P + AQ)] dx ?: A8/2 > O.
a

Let P = P + AQ. Then P E f!lJ and is of degree not exceeding n. Also

II! - Pill = r If - PI dx ?: r(f - P) a[f - (P + AQ)] dx
a a

= rIf - (P + AQ)I dx +rAQa[f - (P + AQ)] dx
a a

> rIf - (P + AQ)I dx = Ilf- Pill,
a

which contradicts our assumption on P.
To prove the last assertion of the theorem, we assume that the left hand

side of (4.2), for Q = P, equals some 8 =I=- O. Since

rPa[f - (1 + A) P] dx ---+ rPa[f - P] dx
a a

as A---+ 0, we may choose A (I A I < I) so that

ArPa[f (1 + A) P] dx ?: A8/2 > O.
a

Then (1 + A) P E f!lJ, yet the same calculation as above shows that
Ilf - Pill> II! - (1 + A) Pill, a contradiction.

Remarks. The theorem also holds if it is only assumed that f E Ll[a, b].
The proof is word for word the same.

One may wish to improve the theorem in analogy to the corresponding
theorem for unrestricted polynomials. That is, one could try to replace the
inequality in (4.1) by equality and also try to prove the converse. However,
the example n = 1, f!lJ = f!lJ(l; I), [a, b] = [0, 1] and f(x) = 1 - x proves
the first conjecture to be false. In this case, P(x) = 1/2 is clearly the poly-
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nomial of best approximation. Since a(f - P) = 1 for 0 :( x < 1/2 and
a(f - P) = -I for 1/2 < x :( 1, Q(x) = x satisfies

rQa(f- P)dx < O.
o

That the converse is false can also be seen by considering this example.
Any polynomial PI in fYI with P1(l/2) = 1/2 satisfies a(f - PI) = a(f - P).
Thus, by Theorem 4.1, (4.1) holds. Yet PI is not necessarily a polynomial
of best L 1 approximation to f

Let Bj = B;(P), for P E fYI, be defined as before. The following corollary,
~hich is a slight improvement of Theorem 4.1, proves to be very useful.

COROLLARY 4.2. If P E fYI is a polynomial of best L 1 approximation to
f E C[a, b] in fYI, and iff - P =1= 0 a.e., then

rQ(x) a[f(x) - P(x)] dx :( 0
a

for all polynomials Q of degree not exceeding n satisfying

(4.3)

yEBj , j= I, ... ,p. (4.4)

Proof Suppose the conclusion is false. That is, suppose that there is a
polynomial Q of degree not exceeding n which satisfies (4.4) but for which

rQa[f - P] dx = 8 > O.
a

Let PI be some polynomial of degree not exceeding n for which

xE[a,b], j= I, ... ,p.

That such polynomials exist is shown in [1]. Let Q = Q + fJ-Pl' Clearly,
for some fJ- > 0 sufficiently small, we have

rQa(f - P) dx ~ 8/2 > O.
a

The calculations in the proof of Theorem 4.1 can be used to show that
IJf - P IiI > IJf - (P + AQ)lll as soon as A > 0 is sufficiently small. We
reach a contradiction if we can show that P + AQ E fYI for some A.
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Let Ij , ej , Yji be the numbers and points associated with BJCP), j = 1,... , p,
as before. Since Q satisfies (4.4), we know that

j = I, ... ,p, i = I,..., lj.

Thus, for each j, there is an open neighborhood OJ of Bj such that

Clearly,

-(k) )
EjQ '(Yji > 0, XEOj •

X E OJ, j = 1,... , p, (4.5)

for all ,\ > O. Since pUCj) > 0 on [a, b] - OJ, we have

o < f3j = min {p(k)(X)}.
XE[a,b)-oj

If we choose ,\ so small that

A sup I Q\kj)(x)1 < f3j ,
xE[a,b)

then

j = 1,... ,p,

X E [a, b] - OJ . (4.6)

Combining (4.5) and (4.6), we see that P + '\Q E f!J if '\, p- are chosen as
above.

Remark. This corollary remains valid for fE LI[a, b].
Instead of A(P, j), the set which is relevant for L I approximation is

D(P, j), the set of points where f - P changes sign. If g E qa, b] is nonzero
a.e. in [a, b], we say that g changes sign m times in [a, b] if there exist m
points a < Xl < ... < X m < b for which g is either nonnegative or non
positive in each of the intervals [a, Xl], [Xl' x2], ... , [xm , b], the signs ~, ~

alternating from each interval to its immediate neighbor. We say that g
changes sign on {Xi}' m = 0 means g is always ~ 0 or always ~ 0 in [a, b].
If no such m exists, we set m = 00. Iff E qa, b], P E f!J and f - P cF 0 a.e.
in [a, b], m = m(P,j) will henceforth be the number of timesf - P changes
sign in [a, b] and, if 0 < m < 00, D(P,j) = {Xl"'" x m } will denote the set
of points where f - P changes sign.

LEMMA 4.3. Let f E qa, b]. If there is more than one polynomial in f!J
of best LI approximation to f, then there exists among them a polynomial Po ,
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called a minimal polynomial, such that f - Po oF- 0 a.e. in [a, b] and such
that if P E 9 is any other polynomial of best L I approximation to f, then

j = 1,.."p.

Also deg(Po) ~ deg(P) and, ifm(Po ,f) isfinite, thenf - P is zero on D(Po ,f).

Proof Let F be the set of all polynomials in 9 which are of best approxi
mation to f Let

Bi = nBi(P),
PEF

i = l,oo.,p.

It is clear that each B i is either the entire interval [a, b] or has only a finite
number of points. In either case, there exist a finite number of polynomials
Pi,I ,00', Pi'T

i
E F such that

Let

TinB;(P;j) = B i ,
j~I

i = l,oo.,p.

(

' P )-1 P Ti

PI = i~ ri i~ j~ Pij •

Clearly, PI E 9. By convexity, PI E F. Also

PEF, i=I,.oo,p. (4.7)

If deg(PI) = maxPEF[deg(P)], let P2 E F be arbitrary, but distinct from PI . If
deg(PI) < maxPEF[deg(P)], let P2 E F be such that deg(P2) = maxpEF[deg(P)].
Since there can be only a countable number of polynomials P for which
f - P = 0 on a given set of nonzero measure, there is a A, 0 < A < 1,
for which Po = API + (1 - A) P2 satisfies f - Po oF- 0 a.e. in [a, b].
Moreover, since there is at most one possible choice of A for which
deg[APl + (1 - A) P2 ] oF- maxPEF[deg(P)], we may choose A so that
deg(Po) = maxPEF[deg(P)]. Then Po E F, and (4.1) together with the positivity
of A imply that

i = 1,.oo,p.

Let P E F. Then

b b JbJ If-Po I dx + J If - PI dx = If-Po +f- PI dx
a a a
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implies that a(f - Po) = a(f - P) a.e. in [a, b] and, hence, by continuity,
everywhere in [a, b]. Here equality is meant in the sense that

[a(f - Po)] . a(f - P)(x) ;;: O.

The rest of the Lemma follows from this equality.

5. AN INTERMEDIATE LEMMA

We prove now the main lemma needed for the uniqueness theorem. As
in the case of the uniform norm, we introduce, for eachfE C[a, b] and each
P E 9 of best L1 approximation to f, an incidence matrix I(P, j). Let v be
the degree of P. Assume that m(P,j) is finite. For k; ~ v, the sets B; and,
hence, the corresponding numbers e;, I; are finite. We define I(P,j) to be
the incidence matrix corresponding to the conditions

Q(Xi) = CXi,

Q(k;\Yji) = f3;i ,

Q(kj+!)(Y;i) = Y;i,

Q(xo) = CXo ,

i = 1, ... , m(P, j),

k; ~ v, i = 1,... , I; ,

a < Yii < b, k; + 1 ~ v, i = 1,... , I; ,
(5.1)

where Xo E (a, x1)(XOE (a, b) if m(P,j) = 0) and the CXi, f3ji, Y;i' CXo are
arbitrary reals. I(P,j) has v + 1 columns.

We define N by

where m = m(P, j).

N = m + I I; + I (I; - ej),
kj<v k j +l<v

(5.2)

LEMMA 5.1. Let P E 9 be a polynomial of best L1 approximation to
fE C[a, b] such that f - P#-O a.e. and such that m = m(P,j) is finite. If
I(P,j) and N are defined as above, then I(P,j) satisfies the Atkinson-Sharma
condition and the strong P61ya conditions. I(P, j) has exactly N + 1 nonzero
entries, where

Moreover, N;;: v + 1.

N = m + I (2/j - ej).
kj~V

(5.3)

Proo.f That (5.3) holds and that I(P, j) has exactly N + 1 nonzero
entries follow exactly as in the proof of Lemma 2.2, since these are properties
of the class 9.
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If we omit the last condition of (5.1), the resulting incidence matrix
satisfies the Atkinson-Sharma condition since it has exactly the same form
as E(P, j) of Lemma 2.2. Since the addition of the omitted condition can
neither create a supported sequence of odd length nor cause a maximal
sequence of odd length to be supported,I(P,f) satisfies the Atkinson-Sharma
condition.

With mj defined as before, we want to prove that

k

L mj ): k + 2,
j~O

k = 0, 1,... , v-I. (5.4)

Clearly m ): k l , since there always exists a polynomial R of degree m
which alternates sign at the Xi, i = 1, ... , m and for which

.b

J Ra(f - P) dx > 0.
"

If m::(; k l - 1, then R E 9, in contradiction to Theorem 4.1. Since
mo = m + 1, (5.4) is satisfied for k = 0,1,... , k l - 1.

Now we assume that (5.4) is false and that Kis the smallest integer k for
which (5.4) is violated. Then necessarily k l ::(; k ~ v-I and

ji

L m j = k + 1.
j=O

Moreover, (5.4) is satisfied for °::(; k ~ k - 1, and mji = 0.
Let J(P,j) be the incidence matrix consisting of the columns of [(P,i)

numbered °through K. Since m/i = 0, no maximal sequence of I(P, j) can
cross this column. Hence J(P,j) satisfies the Atkinson-Sharma condition.
Since (5.4) is satisfied for °::(; k ~ K- 1, J(P, j) also satisfies the strong
P6lya conditions. Since J(P,j) has K+ 1 columns and exactly k + 1 non
zero entries, we may pose the following RI.P. for polynomials Q of degree
not exceeding K:

Q(Xi) = 0,

Q(kj)(Yji) = 0,

Q(k j +1)(Yji) = 0,

Q(xo) = ao ,

i = 1,... , m,

k j ::(; k, i = 1,... , Ij ,

a < Yii < b, k j + 1 ::(; k, i = 1'00" Ij ,

(5.5)

where 0"0 is the sign off - P in (a, Xl)' By the Atkinson-Sharma theorem,
this problem has a unique nonzero solution Q. We shall show that Q violates
Corollary 4.2.
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To do this, we first prove that Q has only the zeros Xl"'" xm in (a, b) and
that these zeros are all of odd multiplicity. The proofs of both of these
claims are based on the same idea. If either of them did not hold, then Q
would be the unique solution of a homogeneous B.I.P. and, hence, identically
zero. In view of (5.5), this is impossible.

In fact, suppose that Q(x) = 0 for some X E (a, b), x # Xi, i = 1,... , m.
Then Q satisfies (5.5) with the last condition replaced by Q(x) = O. Let II
be the incidence matrix corresponding to these conditions. From previous
arguments it is clear that II is free since we have replaced Xo by x. So Q is
identically zero.

Suppose now that Q has a zero of even multiplicity at one of the Xi,

say X r • Taking into account that the second and third conditions of (5.5)
always come in pairs (since mli = 0), there must be integers s ~ 1 for which
Q(S)(xr ) = 0 and for which this equality does not appear in (5.5). We let t

be the smallest such s. Then, necessarily, Q(k)(Xr ) = 0 for 0 ~ k ~ t. Since
Q is not identically zero, t ~ K- 1. We consider now a new incidence
matrix. Let 12 be the incidence matrix corresponding to (5.5), with the last
condition replaced by Q(t)(xr ) = O.

12 satisfies the Atkinson-Sharma condition since the entry corresponding
to the new condition does not create a supported sequence of odd length,
and does not cause a previously unsupported sequence to be supported.
We cannot prove that 12 satifies the strong P6lya conditions. However,
we can prove that it satisfies the P6lya conditions, and this suffices.

If mj is the sum of the entries of the column numbered j of 12 , then

lc

L mj ~ k + 1,
j~O

k = 0, 1,... , K- 1, (5.6)

since I(P,j) satisfies the strong P6lya conditions. Since the total number of
nonzero entries of 12 is K+ 1, (5.6) also holds for k = Kand, so, 12 is free.
By the Atkinson-Sharma theorem, Q is identically zero.

We see that Q has only the zeros Xl'"'' xm in (a, b) and that these are
of odd multiplicity. It follows that Q alternates sign at the Xi' Since a(Q)
agrees with a(f - P) in (a, Xl), the signs agree a.e. and, hence,

rQa(f - P) dx > O.
a

Since Q is a polynomial of degree not exceeding K, Q(lc) - 0 for k ~ K+ 1.
This, together with the second equality of (5.5) and the above inequality,
violate Corollary 4.2.

This proves that I(P,f) satisfies the strong P61ya conditions.
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Finally, we prove that N ~ v + 1. This follows immediately from the
previous proof if we take k = v. Under the assumption N ~ v, we would
obtain, in contradiction to Corollary 4.2, a polynomial Q of degree not
exceeding k = v which satisfies (4.3) and (4.4).

6. THE UNIQUENESS THEOREM FOR L 1

By means of the lemmas of the previous section, the uniqueness theorem
for the L 1 norm can now be proved.

THEOREM 6.1. Let fE qa, b]. Then among all polynomials in g; there is
exactly one which is of best L1 approximation to f

Proof We must show that there is no more than one such polynomial.
We assume that there is more than one. In accordance with Lemma 4.3,
we let Po be a minimal polynomial and set v = deg(Po). Henceforth, we
let D = D(Po ,J), Bj = Bj(Po) and let Xi , Yji , m, Ij , ej be the corresponding
points and numbers for k j ~ v.

First we consider the possibility m = 00. We claim that there then exist
an infinite number of points x in (a, b) such that f - Po takes on values of
opposite signs in every neighborhood of x. Moreover, this in turn implies
that every polynomial in g; of best L 1 approximation to f is identical to Po .

To prove the first claim, we assume that there are only a finite number
a < Zl < ... < Zs < b of such points. (Our method takes care, also, of the
possibility that there are no such points at all). Since m = 00, f - Po does
not have a constant sign in each of the intervals (a, Zl), ... , (zs ,b). Thus,
for some j, there are points Y1 , Yz (Zj < Y1 < Y2 < Zi+1) at which f - Po
takes on values of opposite signs. Assume that a[(f - PO)(Y1)] = -l and
let

t = sup{x I x E (Y1 ,Y2), (f - Po)(x) < a}.

Then t < Yz , (f - Po)(x) ~ 0 for x E (t, Y2) and there is a sequence t1 , t2 , •••

converging to t, for which (f - PO)(ti ) < O. Thus, f - Po takes on values of
opposite signs in each neighborhood of t. We reached a contradiction since
Zl , .•. , Zs were assumed to be the only such points.

To prove the second claim, we use the equality

a(f - Po) = a(f - P)

in the proof of Lemma 4.3, where PEg; is any polynomial of best L 1 approxi
mation to f By the continuity of f - P and by the above equality,
(f - P)(t) = 0 for each point t of the above type. Since there are an infinite
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number of such points and since also f - Po = °at such points, P and Po
agree at an infinite number of points. Hence P is identical with Po , contra
dicting the assumption that there is more than one polynomial in f!jJ of
best L 1 approximation to f

We may thus assume that m is finite. Let P E f!jJ be any polynomial (cftPo)
of best L 1 approximation to f Then, by Lemma 4.3, deg(P) :S; v, Bj C B;(P)
and P = Po on D. Then S = Po - P satisfies:

S(Xi) = 0,

S(kj)(Yji) = 0,

S(k j +1)(Yji) = 0,

i = 1,... , m,

k j :S; v, i = 1, ... , lj, (6.1)

Yii E (a, b), kj:S; v, i = 1,... , lj .

The last equality holds due to Lemma 2.1.
Let N be as in (5.2). Let E be the incidence matrix with N columns corre

sponding to the conditions (6.1). From Lemma 5.1 it is easy to conclude that
E has exactly N nonzero entries, that E satisfies the Atkinson-Sharma
condition, that E satisfies the P61ya conditions and that N ;;? v + 1. Thus
we have a B.I.P. whose incidence matrix is free. It follows that any polynomial
of degree not exceeding N - 1 which satisfies (6.1) must be identically
zero. Since deg(S) :S; v :S; N - 1, S is identically zero and, so, P and Po
coincide. Thus there is exactly one polynomial in f!jJ which is of best L1

approximation to f

Remark. This proof is valid not only for the ~ norm but also for any
L1(p) norm, where p > °a.e. in [a, b]. Thus, the following theorem holds.

THEOREM 6.2. Let fE C[a, b]. Let p E L1[a, b] and be > 0 a.e. in [a, b].
Then among all polynomials in f!jJ there is exactly one which approximates f
best in the L 1(p) norm. That is, there is exactly one which minimizes

.b

j If - Pip dx.
a

Proof Replace dx by p dx in the proof of Theorem 6.1.

Remark. A similar proof can be carried out for more general Banach
spaces of functions. This is a topic to which the author plans to return.
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